SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

Course Title:	ARCHITECTURAL	ENGINEERING	GIII		
Code No.:	ARC 205				
Program:	ARCHITECTURAL	TECHNICIAN	(DRAFTING)		
Semester:	IV				
Date:	JUNE, 1983				-
Author:	G. FRECH				
		New:		Revision: _	Х
	LP Desit	4.			
APPROVED:	S.P. Arozette Chairperson		Da	te	

ARCHITECTURAL ENGINEERING III
Course Name

ARC 205 Course Number

PHILOSOPHY/GOALS:

The student will have a basic knowledge in the design of light framing and the use of structural tables. He/she will be able to design simple structures in skeleton frame using steel and wood.

METHOD OF ASSESSMENT (GRADING METHOD):

A - 86 - 100%

B - 70 - 85%

C - 55 - 69%

R - Repeat

X - Work to be upgraded or new work assigned

- Marks will be accumulated and averaged using tests and assignments
- Final testing will be given students not achieving 75% average with no failures or 80% average with one failure 50-54% average.
- Attendance, lateness and attitude will be considered in assessment.

TEXTBOOK(S):

CISC Steel Handbook

CISC Drafting Fundamentals

Applied Strength of Materials

ARCHITECTURAL ENGINEERING III

ARC 205

TOPIC NO.	PERIOD	TOPIC DESCRIPTION	REFERENCE
1.	12	Beam Design - Steel/Wood	-
		- Loading - Design loads - Wall plates - Crippling - Shear - Deflection	
2.	8	Column Design	
		Axial loadingColumn design, steel/woodBase plans	
3.	4	Connections	
		- Tables - Headers - Seats	
4.	8	Clearance & Interference	
		Standard clearanceStandard guagesCopes	
5.	8	Drawings	
		- Grid system - Details - Notes - Schedules	
6.	24	Trusses	
		- Stress diagrams - Bow's notation - Member design - Panel points - Splices - Smoleys tables	

SPECIFIC OBJECTIVES

ARC 205

Beam Design - Steel & Wood

- 1. Identify loading
- 2. Calculate design loading
- 3. Flexure formula
- 4. Beam design steel
- 5. Beam design wood
- 6. Design wall plates
- 7. Design for crippling
- 8. Design for shear
- 9. Design for deflection

Column Design

- 1. Identify columns under axial load
- 2. Identify K factor
- 3. Calculate least radius of gyration
- 4. Identify short, medium and long columns
- 5. Know rules for column design and apply
- 6. Design simple steel column base plates
- 7. Identify columns in wood for 1/d range
- 8. Use tables for steel and wood from handbooks

Connections

- Standard types
- Special types
- 3. CISC tables

Clearance & Interference

- 1. Identify standard clearance and interference
- 2. Identify and calculate copes
- 3. Identify standard connection symbols

Drawings

- 1. Identify grid systems and their purpose
- 2. Identify and read column schedules
- 3. Identify and draw special details
- 4. Apply the information to student drawing projects

Trusses

- 1. Use Bow's notation
- 2. Draw and scale truss stress diagrams
- 3. Determine members in tension or compression
- 4. Calculate stresses in panel points mathematically
- 5. Use Smoley's tables
- 6. Calculate shop clearances
- 7. Calculate connector requirements